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Abstract

We consider pseudo-Riemannian generalizations of Osserman, Clifford, and the
duality principle properties for algebraic curvature tensors and investigate re-
lations between them. We introduce quasi-Clifford curvature tensors using a
generalized Clifford family and show that they are Osserman. This allows us to
discover an Osserman curvature tensor that does not satisfy the duality princi-
ple. We give some necessary and some sufficient conditions for the total duality
principle.
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1. Introduction

Let (V, g) be a (possibly indefinite) scalar product space of dimension n.
The squared norm of a vector X ∈ V is the real number εX = g(X,X). The
sign of the squared norm distinguishes all vectors X ∈ V into three different
types. A vector X ∈ V is spacelike if εX > 0; timelike if εX < 0; null if εX = 0.
Especially, a vector X ∈ V is nonnull if εX 6= 0 and it is unit if εX ∈ {−1, 1}.

An algebraic curvature tensor on (V, g) is a quadri-linear map R : V4 → R
that satisfies usual Z2-symmetries and the first Bianchi identity. In the presence
of an orthonormal basis (E1, . . . , En) in V, we have the associated Jacobi opera-
tor JX : V → V for X ∈ V by JX(Y ) =

∑n
i=1 εEi

R(Y,X,X,Ei)Ei. The Jacobi
operator is a self-adjoint endomorphism on V, and therefore it is diagonalizable
if g is definite. However, this is no longer true in the indefinite setting, so if
JX is diagonalizable for any nonnull X we say that R is Jacobi-diagonalizable.
In general, the eigen-structure of JX is determined by the Jordan normal form
(the number and the sizes of the Jordan blocks).

We say that R is timelike Osserman (or spacelike Osserman) if the charac-
teristic polynomial of the Jacobi operator JX is independent of unit timelike
(or spacelike) X ∈ V. We say that R is timelike Jordan-Osserman (or spacelike
Jordan-Osserman) if the Jordan normal form of JX is independent of unit time-
like (or spacelike) X. An algebraic curvature tensor is Osserman if it is both
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timelike and spacelike Osserman, and it is Jordan-Osserman if it is both time-
like and spacelike Jordan-Osserman. It is known that spacelike Osserman and
timelike Osserman are equivalent properties, and R is Osserman if and only if
det(εXλ Id−JX) = 0 is the same equation for all nonnull X. However, spacelike
Jordan-Osserman and timelike Jordan-Osserman are not equivalent (see Section
3).

In the Riemannian setting (g is positive definite), one of important features
of an Osserman algebraic curvature tensor is the duality principle, given by
Rakić [12]. Generalizations to a pseudo-Riemannian setting (see Andrejić and
Rakić [3, 4]) are possible by the following implication,

Y is an eigenvector of JX =⇒ X is an eigenvector of JY . (1)

We shall use two kinds of duality depending on our (X,Y ) domain. If (1) holds
for all X,Y ∈ V with the restriction εX 6= 0, we say that R is Jacobi-dual (R
satisfies the duality principle), and if the only restriction is X 6= 0, we say that
R is totally Jacobi-dual (see Andrejić and Rakić [4]).

After Rakić established the duality principle and proved that a Riemannian
Osserman algebraic curvature tensor is Jacobi-dual (see [12]), it is extensively
studied in the pseudo-Riemannian settings. The best results were recently given
by Nikolayevsky and Rakić [11], where they showed that any Jordan-Osserman
R is Jacobi-dual. They also proved that if the set of those X ∈ V for which JX
is diagonalizable has a nonempty interior (R is semisimple) then R is Osserman
if and only if it is Jacobi-dual.

Additionally, we have the following partial results. Any four-dimensional
Osserman R is Jacobi-dual, see Andrejić [1]. Any Lorentzian totally Jacobi-
dual R has constant sectional curvature, see Andrejić and Rakić [4]. Any four-
dimensional Jacobi-dual R such that JX is diagonalizable for some nonnull X
is Osserman, see Andrejić [2].

2. Quasi-Clifford curvature tensors

A tensor of constant sectional curvature 1 is a very first example of an
algebraic curvature tensor,

R0(X,Y, Z,W ) = g(Y,Z)g(X,W )− g(X,Z)g(Y,W ).

Additionally, any skew-adjoint endomorphism J on V generates a new example
by

RJ(X,Y, Z,W ) = g(JX,Z)g(JY,W )−g(JY, Z)g(JX,W )+2g(JX, Y )g(JZ,W ).

Therefore, a linear combination

R = µ0R
0 +

m∑
i=1

µiR
Ji (2)
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is an algebraic curvature tensor for skew-adjoint endomorphisms J1, . . . , Jm on
V.

A Clifford family is an anti-commutative family of skew-adjoint complex
structures Ji, 1 6 i 6 m. Algebraic curvature tensors of form (2) associated
with a Clifford family were introduced by Gilkey [6, 9]. However, it is natural
to consider the generalization, an anti-commutative family of Ji such that J2

i =
ci Id for some ci ∈ R, that is, the Hurwitz-like relations,

JiJj + JjJi = 2ciδij Id, (3)

hold for 1 6 i, j 6 m. We say that an algebraic curvature tensor R is quasi-
Clifford if it has a form (2) with the Hurwitz-like relations (3). Especially, R is
Clifford if it is quasi-Clifford with ci = −1 for all 1 6 i 6 m.

It is well known that a Clifford algebraic curvature tensor is Osserman. How-
ever, according to Nikolayevsky [10, Section 2], in the Riemannian setting the
converse is true (an Osserman R is Clifford) in all dimensions except n = 16,
and also in many cases when n = 16. The only known (Riemannian) counterex-

ample is the curvature tensor ROP
2

of the Cayley projective plane, or more
precisely, any algebraic curvature tensor of the form µROP

2

+ ξR1, where R1 is
the curvature tensor of the unit sphere S16(1) and µ 6= 0.

Let us start with a quasi-Clifford R and an arbitrary vector X ∈ V. Each
Ji is skew-adjoint which implies g(JiX,X) = 0 and simplifies the calculation of
the Jacobi operator,

JX(Y ) = µ0(εXY − g(Y,X)X)− 3

m∑
i=1

µig(Y, JiX)JiX. (4)

Additionally, the equation (3) implies g(JiX, JjX) = 0 and εJiX = −ciεX for
1 6 i 6= j 6 n. If we denote Ft = {X, J1X, . . . , JtX} for 1 6 t 6 m, then we
obtain

JX(JiX) = εX(µ0 + 3ciµi)JiX, JX(Z) = εXµ0Z,

for all 1 6 i 6 m and Z ∈ F⊥m. It is important to distinguish the case ci 6= 0,
1 6 i 6 k from the case ci = 0, k < i 6 m.

For a nonnull X, the set Fk consists of mutually orthogonal nonnull eigen-
vectors. Thus, SpanFk and F⊥k are nondegenerate, and we can consider the

restriction J̃X of JX to F⊥k as a self-adjoint endomorphism on F⊥k . Eigenvec-
tors corresponding to distinct eigenvalues of a self-adjoint endomorphism are
mutually orthogonal, including complex eigenvectors for complex eigenvalues
from the complexification VC ∼= V ⊕ iV. However, all vectors orthogonal to
Fm \ Fk are eigenvectors with the eigenvalue εXµ0, and consequently J̃X has
no other eigenvalues. Hence,

det(εXλ Id−JX) = (εX)nλ(λ− µ0)n−k−1Πk
i=1(λ− (µ0 + 3ciµi)),

which means that R is Osserman.

Theorem 1. Any quasi-Clifford algebraic curvature tensor is Osserman.
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Additionally, the Jordan normal form of JX has the critical part on F⊥k ,

where for J̃X we have

Im(J̃X − εXµ0 Id) ⊆ Span{Jk+1X, . . . , JmX} ⊆ Ker(J̃X − εXµ0 Id),

and therefore J̃X − εXµ0 Id is two-step nilpotent, (J̃X − εXµ0 Id)2 = 0. Thus,
a quasi-Clifford R allows only Jordan blocks of size 2.

However, let us remark that a pseudo-Riemannian manifold (R4, g) induced
by the metric g = x2x3dx

2
1 − x1x4dx22 + 2dx1dx2 + 2dx1dx3 + 2dx2dx4, at any

point has the curvature tensor that is Jordan-Osserman such that the Jordan
normal form has a Jordan block of size 3 (see [5, Remark 4.1.2]). This means
that the converse question fails in the signature (2, 2), where an Osserman R is
not necessarily quasi-Clifford.

3. Jacobi-duality

We shall follow and generalize the arguments from Andrejić and Rakić [4]
with the purpose to investigate whether a quasi-Clifford R is Jacobi-dual. Let
X ∈ V be nonnull and suppose that Y is an eigenvector of JX , that is, JX(Y ) =
εXλY holds for some λ ∈ R. Then (4) implies

εX(λ− µ0)Y = −µ0g(Y,X)X − 3

m∑
i=1

µig(Y, JiX)JiX, (5)

while by interchanging the roles of X and Y in (4) we have

JY (X) = µ0(εYX − g(X,Y )Y )− 3

m∑
i=1

µig(X, JiY )JiY. (6)

If λ 6= µ0, then we can express Y from (5) and get

JY (X) = µ0

(
εY +

µ0(g(X,Y ))2

εX(λ− µ0)

)
X

+
3µ0g(X,Y )

εX(λ− µ0)

m∑
i=1

µi (g(Y, JiX) + g(X, JiY )) JiX

+
9

εX(λ− µ0)

m∑
i=1

m∑
j=1

µiµjg(X, JiY )g(Y, JjX)JiJjX

=

(
µ0εY +

µ2
0(g(X,Y ))2

εX(λ− µ0)
− 9

εX(λ− µ0)

m∑
i=1

µ2
i (g(Y, JiX))2ci

)
X,

so X is an eigenvector of JY . Otherwise, λ = µ0 gives

µ0g(Y,X)X + 3

m∑
i=1

µig(Y, JiX)JiX = 0. (7)
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If the set Fm is linearly independent, we have g(Y,X) = g(Y, JiX) = g(JiY,X) =
0, and therefore JY (X) = εY µ0X, and again, X is an eigenvector of JY . For
a nonnull X, SpanFk is a nondegenerate subspace of V orthogonal to Fm \ Fk.
Thus, if m = k or m = k + 1, then the set Fm is linearly independent.

Theorem 2. Any quasi-Clifford algebraic curvature tensor with at most one
ci = 0 is Jacobi-dual.

However, this is no longer true if there are at least two Ji with ci = 0. Let
(T1, . . . Tp, S1, . . . , Sq) be an orthonormal basis in a scalar product space (V, g)
of signature (p, q). Let us set an endomorphism J on V by

JT1 = T2 + S2 = −JS1, −JT2 = T1 + S1 = JS2

JT3 = T4 + S4 = −JS3, −JT4 = T3 + S3 = JS4

JT5 = · · · = JTp = JS5 = JS6 = . . . JSq = 0.

It is easy to check that J is skew-adjoint with J2 = 0. In the case 4 = p < q,
an Osserman algebraic curvature tensor R = RJ is timelike Jordan-Osserman,
but it is not spacelike Jordan-Osserman, which is similar to Gilkey and Ivanova
[8] and Gilkey [7, Section 3.2]. Let us introduce an additional endomorphism K
on V by

KT1 = T2 + S2 = −KS1, −KT2 = T1 + S1 = KS2

KT3 = T4 + S5 = −KS3, −KT4 = T3 + S3 = KS5

KT5 = · · · = KTp = KS4 = KS6 = . . .KSq = 0.

It is just changing roles of S4 and S5 in J , so K is also skew-adjoint with K2 = 0.
If we set R = RJ−RK , then from (4), JX(Y ) = 3(g(Y,KX)KX−g(Y, JX)JX).
Since JT1 = KT1 = T2+S2 we have JT1(Y ) = 0 for any Y ∈ V. Additionally, for
Y = T2 +

√
2S4 we have g(Y, JT1) = g(Y,KT1) = g(T2 +

√
2S4, T2 + S2) = −1,

and therefore JY (T1) = 3(g(Y, JT1)JY − g(Y,KT1)KY ) = −3
√

2(T3 + S3).
Thus,

JT1
(T2 +

√
2S4) = 0, JT2+

√
2S4

(T1) = −3
√

2(T3 + S3)

show that R is not Jacobi-dual. Moreover, our counterexample contains mutu-
ally orthogonal unit vectors X = T1 and Y = T2 +

√
2S4, such that (1) does

not work. In this way we were able to discover an Osserman R that is not
Jacobi-dual.

Theorem 3. There exist quasi-Clifford (and therefore Osserman) algebraic cur-
vature tensors which are not Jacobi-dual.

4. Total Jacobi-duality

Skew-adjoint endomorphisms with J2
i = 0 change the Jordan normal form of

JX and therefore they are inadequate for the duality principle, which we have
already seen in the previous section. Hence, we shall exclude them (m = k),
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which leaves only the Ji that are automorphisms. Without loss of generality,
using the rescaled (1/

√
|ci|)Ji, we can suppose ci ∈ {−1, 1}, and such R we

called semi-Clifford. From Section 2, it is easy to see that semi-Clifford R is
Jacobi-diagonalizable and consequently Jordan-Osserman.

A semi-Clifford algebraic curvature tensor is generated by a family of anti-
commutative skew-symmetric orthogonal and anti-orthogonal operators on V.
In fact, these are complex structures (ci = −1) and product structures (ci = 1).
It worth noting that a product structures Ji change the signature because of
εJiX = −εX , so in a non-neutral signature any semi-Clifford R is Clifford.

We have already seen that a semi-Clifford R is Jacobi-dual, and the next step
is to investigate whether R is totally Jacobi-dual. The previous paper [4] gives
only a sufficient condition that Fm is linearly independent. Namely, if X is null,
then the equation (4) for JX(Y ) = 0 yields the equation (7), where the linear
independence of Fm, as before, gives JY (X) = εY µ0X. Therefore, we should
examine whether the set Fm = {X,J1X, . . . , JmX} is linearly independent for
a null vector X 6= 0.

Let us suppose that

θ0X + θ1J1X + · · ·+ θmJmX = 0 (8)

holds for some θ0, θ1, . . . , θm ∈ R and X 6= 0. Applying an endomorphism

(−1)αJα = (−1)α1+···+αmJαm
m . . . Jα1

1

for α = (α1, . . . , αm) ∈ {0, 1}m we get a new equation

m∑
i=0

(−1)αθiJ
αJeiX = 0,

where ei = (δi1, δi2, . . . , δim) with additional e0 = (0, . . . , 0), i.e. Jei = Ji, and
Je0 = Id. It is easy to see that

(−1)αJαJei = (−1)αi+···+αm(ci)
αiJα±ei ,

where α± ei and α differ only in the i-th slot. Thus we have a homogeneous
system of 2m linear equations with 2m unknowns,∑

β

MαβJ
βX = 0, (9)

with Mαα = (−1)αi+···+αmθ0, Mα(α±ei) = (−1)αi+···+αm(ci)
αiθi for 1 6 i 6 m,

and Mαβ = 0 otherwise. Consider the matrix M2, and calculate its entries,

(M2)αα = MααMαα +Mα(α±e1)M(α±e1)α + · · ·+Mα(α±em)M(α±em)α

= θ20 − c1θ21 − · · · − cmθ2m,
(M2)α(α±ei) = MααMα(α±ei) +Mα(α±ei)M(α±ei)(α±ei) = 0,

(M2)α(α±ei±ej) = Mα(α±ei)M(α±ei)(α±ei±ej) +Mα(α±ej)M(α±ej)(α±ei±ej) = 0,
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and (M2)αβ = 0 otherwise. Thus, M2 is a diagonal matrix with

(detM)2 = det(M2) = (θ20 − c1θ21 − · · · − cmθ2m)2
m

.

It is important to notice that if detM 6= 0, the system (9) has the unique zero
solution X = J1X = · · · = JmX = 0, which is absurd since X 6= 0. Hence, we
have the following statement.

Theorem 4. If θ0X + θ1J1X + · · ·+ θmJmX = 0 holds for X 6= 0 then

θ20 − c1θ21 − · · · − cmθ2m = 0. (10)

In the case of Clifford R, we have ci = −1 for all 1 6 i 6 m, so (10) gives
θ20 + θ21 + · · · + θ2m = 0, and therefore θi = 0 holds for all 0 6 i 6 m, Fm is
linearly independent and consequently R is totally Jacobi-dual.

Theorem 5. Any Clifford algebraic curvature tensor is totally Jacobi-dual.

However, there are some problems in the case that we have ci = 1 for some
i. If R is semi-Clifford that is not totally Jacobi-dual, then there exists a pair
of vectors (X,Y ) such that X 6= 0 is null with JX(Y ) = 0, where JY (X) is not
proportional to X. As before, we need (8), θ0X + θ1J1X + · · · + θmJmX = 0,
such that θ0 = µ0g(Y,X), and θi = 3µig(Y, JiX), 1 6 i 6 m. Thus,

θ20 = µ0g(Y, θ0X) = −µ0

m∑
i=1

θig(Y, JiX) = −µ0

m∑
i=1

θ2i
3µi

.

If we include Theorem 4, the necessary conditions become

θ20 =

m∑
i=1

ciθ
2
i = −µ0

m∑
i=1

θ2i
3µi

. (11)

Hence
m∑
i=1

(ci +
µ0

3µi
)θ2i = 0,

which implies the following theorem.

Theorem 6. If (3ciµi + µ0)µi > 0 for all 1 6 i 6 m or (3ciµi + µ0)µi < 0 for
all 1 6 i 6 m, then the associated semi-Clifford R is totally Jacobi-dual.

5. Anti-Clifford curvature tensor

In the case that ci = 1 holds for all 1 6 i 6 m we say that R is anti-Clifford.
Then, Theorem 4 for the hypothetical θ0 = 0 gives θ21+· · ·+θ2m = 0 which shows
that the set {J1X, . . . , JmX} is linearly independent, but Fm can be linearly
dependent.

We say that a subspace W of an indefinite scalar product space (V, g) is
totally isotropic if it consists only of null vectors, which implies that any two
vectors from W are mutually orthogonal. We need the next well known state-
ment about an isotropic supplement of W.
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Proposition 1. LetW ⊂ V be a totally isotropic subspace with basis N1, . . . , Nk.
Then there exist a totally isotropic subspace U , disjoint from W, with basis
M1, . . . ,Mk, such that g(Ni,Mj) = δij holds for 1 6 i, j 6 k.

Proof. The proof is by induction on k, where the case k = 0 is trivial. Let us
set P = Span{N1, . . . , Nk−1}. Since Span{Nk} is not a subspace of P, P⊥ is
not a subspace of Span{Nk}⊥, and there exists X ∈ P⊥ such that g(X,Nk) 6= 0.
Then

Mk =
−εX

2(g(X,Nk))2
Nk +

1

g(X,Nk)
X

is null with g(Nk,Mk) = 1. The subspace Span{Nk,Mk} is nondegenerate since
it has an orthonormal basis (Nk +Mk)/

√
2, (Nk −Mk)/

√
2. By construction P

is a subspace of the nondegenerate Span{Nk,Mk}⊥ and we apply the induction
hypothesis to get M1, . . . ,Mk−1 with desired properties. �

Since J1X, . . . , JmX form a basis of a totally isotropic subspace of V, by the
previous proposition there exists a basis {M1, . . . ,Mm} of an isotropic supple-
ment, such that g(JiX,Mj) = δij and g(Mi,Mj) = 0 hold for 1 6 i, j 6 m.
Then

Z =

m∑
i=1

θi
3µi

Mi

has the properties θi = 3µig(Z, JiX), and consequently, by (11), θ0 = µ0g(Z,X).
Moreover, Z +W has the same properties for any W ∈ {J1X, . . . , JmX}⊥.

From (6), we need such Y that −θ0Y +
∑m
i=1 θiJiY is not proportional to X.

Therefore, we search for Y = Z+W such that K(Z+W ) is not proportional to X
where K = −θ0 Id +

∑m
i=1 θiJi. For any nonnull D, the set {D,J1D, . . . , JmD}

is linearly independent (mutually orthogonal nonnull vectors), and therefore
K(D) = 0 implies θ0 = · · · = θm = 0 which is impossible. Thus K(D) 6= 0 holds
for all nonnull D.

Let us suppose that dimV = n > 2m, which enables a nonnull vector H
from {J1X, . . . , JmX,M1, . . . ,Mm}⊥. We already have K(X) = −2θ0X. If R is
totally Jacobi-dual, we have additional K(Z) = ζX and K(Z +H) = ξX. Then
K(H) = (ξ − ζ)X 6= 0, so K(Z − ζ

ξ−ζH) = 0, which implies that Z − ζ
ξ−ζH

is null, and therefore ζ = 0. Similarly, K(X + 2θ0
ξ H) = 0, which implies that

X + 2θ0
ξ H is null, and therefore θ0 = 0, which is a contradiction. Hence, we

have the following theorem.

Theorem 7. If there exist θ0, . . . , θm ∈ R (not all equal to zero), such that
θ0X + θ1J1X + · · ·+ θmJmX = 0 holds for some nonnull X, with the condition
(11), then the associated anti-Clifford algebraic curvature tensor of dimension
n > 2m is not totally Jacobi-dual.

In the end, let us show some examples of anti-Clifford algebraic curvature
tensors which are not totally Jacobi-dual.

In the case m = 1, Theorem 6 gives a necessary condition µ0 + 3µ1 = 0.
A skew-adjoint product structure J given by JTi = Si and JSi = Ti for all
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1 6 i 6 t, n = 2t > 4, where (T1, . . . , Tt, S1, . . . , St) is an orthonormal basis
in a scalar product space (V, g) of neutral signature, provides an anti-Clifford
R = 3µR0 − µRJ for µ 6= 0. We can take X = S1 + T1, because of the linear
dependence X = JX, and apply Theorem 7.

In the case m = 2, Theorem 6 gives (µ0 + 3µ1)(µ0 + 3µ2)µ1µ2 6 0 as a
necessary condition. Consider skew-adjoint product structures J and K given
by JT2i−1 = S2i−1, JT2i = S2i, KT2i−1 = S2i, and JT2i = −S2i−1, for all
1 6 i 6 t, n = 4t > 8, where (T1, . . . , T2t, S1, . . . , S2t) is an orthonormal basis
in (V, g). We can choose X = cosαT1 + sinαT2 + cosβ S1 + sinβ S2 for some
α, β ∈ R to see that X = cos(β − α) JX + sin(β − α)KX. The condition (11)
gives

tan2(β − α) =
sin2(β − α)

cos2(β − α)
=

(
θ2
θ1

)2

= −µ0 + 3µ1

µ0 + 3µ2
· µ2

µ1
,

so we can take α = 0, β = arctan
√
−µ0+3µ1

µ0+3µ2
· µ2

µ1
and apply Theorem 7 to get

an anti-Clifford R = µ0R
0 + µ1R

J + µ2R
K which is not totally Jacobi-dual.
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